Ahsanullah University of Science and Technology (AUST)

Department of Mechanical and Production Engineering (MPE)
IPE 4206: Industrial Simulation Sessional
Credit Hour: 1.5

General Guidelines:

1. Students must be prepared for the experiment prior to the class.
2. Report of an experiment must be submitted in the next class.
3. A quiz will be taken on the experiments at the end of the semester.
4. Marks distribution:
Total Marks: 100
Attendance Assignment Quiz
10 20 70
Introduction:

A simulation is the imitation of the operation of a real-world process or system over time. Whether
done by hand or on a Computer, simulation involves the generation of an artificial history of a
system.

The behavior of a system as it evolves over time is studied by developing a simulation model. This
model usually takes the form of a set of assumptions concerning the operation of the system.

Objective

Objective of this sessional is to observe how simulation modeling can be used both as an analysis
tool for predicting the effect of changes to existing systems (Material handling, Scheduling,
assembly, inventory, queuing etc.) & as a design tool to predict the performance of a new systems
under varying sets of circumstances.

Briefing-1: Introduction to simulation systems, Models & Simulation

Consider a manufacturing firm that is contemplating building a large extension onto one of its
plants but is not sure if the potential gain in productivity would justify the construction cost. It
certainly would not be cost-effective to build the extension and then remove it later if it does not
work out. However, a careful simulation study could shed some light on the question by simulation
the operation of the plant as it currently exists and as it would be if the plant were expanded.

Application areas for simulation are numerous and diverse. Below is a list of some particular kinds
of problems for which simulation has been found to be a useful and powerful tool:

Designing and analyzing manufacturing systems

Evaluating hardware and software requirements for a computer system

Evaluating a new military weapons system or tactic

Determining ordering policies for an inventory system

Designing communications systems and message protocols for them

Designing and operating transportation facilities such as freeways, airports, subways, or

Ports

* Evaluating designs for service organizations such as hospitals, post offices, or fast-food
restaurants

* Analyzing financial or economic systems

* ¥k X X ¥ X

A system is defined to be a collection of entities, e.g., people or machines, that act an interact
together toward the accomplishment of some logical end. In practice, what is meant by "the
system" depends on the objectives of a particular study. The collection of entities that compose a
system for one study might be only a subset of the overall system for another. For example, if one
wants to study a bank to determine the number of tellers needed to provide adequate service for
customers who want just to cash a check or make a savings deposit, the system can be defined to
be that portion of the bank consisting of the tellers and the customers waiting in line or being
served. If, on the other hand, the Joan officer and the safety deposit boxes are to be included, the
definition of the system must be expanded in an obvious way. We define the state of a system to
be that collection of variables necessary to describe a system at a particular time, relative to the
objectives of a study. In a study of a bank, exam pies of possible state variables are the number of
busy tellers, the number of customers in the bank, and the time of arrival of each customer in the
bank.

Discrete-event simulation concerns the modeling of a system as it evolves over time by a
representation in which the state variables change instantaneously at separate points in time. (In
more mathematical terms, we might say that the system can change at only a countable number
of points in time.) These points in time are the ones at which an event occurs, where an event is
defined as an instantaneous occurrence that may change the state of the system. Although
discrete-event simulation could conceptually be done by hand calculations the amount of data
that must be stored and manipulated for most real world systems dictates that discrete-event
simulations be done on a digital computer.

Briefing-2: Simulation of Queuing Systems

Example: A small grocery store has only one checkout counter. Customers arrive at this checkout counter at
random from 1 to 8 minutes apart. Each possible value of inter arrival time is the same probability of
occurrence, as shown in Table 1. The service times vary from 1 to 6 minutes with the probabilities shown in

Table 2. The problem is to analyze the system by simulation for the arrival and service of 20 customers.

Table 1
Time between Arrivals | Probability Cumulative Probability | Random Digit
(Minutes) Assignment
1 0.125 0.125 001-125
2 0.125 0.250 126-250
3 0.125 0.375 251-375
4 0.125 0.500 376-500
5 0.125 0.625 501-625
6 0.125 0.750 626-750
7 0.125 0.875 751-875
8 0.125 1.000 876-000
Table 2
Service Time (Minutes) | Probabiliy Cumulative Probability Random Digit
Assignment
1 0.10 0.10 01-10
2 0.20 0.30 11-30
3 0.30 0.60 31-60
4 0.25 0.85 61-85
5 0.10 0.95 86-95
6 0.05 1.00 96-00
Find out the following:
The average waiting time of a customer
The probability that a customer has to wait in the queue
The proportion of idle time of the server
The average service time of the server
The average time between arrival
[The average waiting time of those who wait
The average time a customer spends in the system
Assignment:
In the above exercise let the service distribution be changed to the following
Service Time | 1 2 3 4 5 6
(Minutes)
Probability 0.05 0.10 0.20 0.30 0.25 0.10

Develop the simulation table and the analysis for 20 customers. What is the effect of changing the service-
time distribution?

Briefing-3: Simulation of Inventory System

Example: Suppose that the maximum inventory level M is 11 units and the review period N is 5 days. The
problem is to estimate by simulation (for 5 Cycle) the average ending units in inventory and the number of
days when a shortage condition existed. The distribution of the number of units demanded per day is shown
in table. Lead time is random variable also shown in table. Assume that the orders are placed at the close
of business. Beginning inventory is 3 units and an order of 8 units is scheduled to arrive in 2 days’ time.

Table 1: Random Digit Assignment for Daily Demand

Demand Probability Cumulative Probability | Random Digit
Assignment
0 0.10 0.10 01-10
1 0.25 0.35 11-35
2 0.35 0.70 36-70
3 0.21 0.91 7191
4 0.09 1.00 92-00
Table 2: Random Digit Assignments for Lead Time
Lead Time (Days) Probability Cumulative Probability | Random Digit
Assignment
1 0.6 0.6 1-6
0.3 0.9 7-9
3 0.1 1.0 0
Find the following:

- Average ending inventory
- Number of days’ shortage condition existed

Assignment: rework the above example for 10 cycles with M=10

Briefing-4: Simulation on reliability problem

Example: A large milling machine has three different bearings that fall in service. The cumulative
distribution function of the life of each bearing is identical as shown in the table. When a bearing fails, the
mills stops, a repairperson is called, and a new bearing is installed. The delay time of the repairperson’s
arriving at the milling machine is also a random variable, with the distribution given in table 2. Downtime
for the mill is estimated at $5 per minute. The direct on site cost of the repairperson is $15 per hour. It takes
20 minutes to change one bearing, 30 minutes to change two bearings, and 40 minutes to change three
bearings. The bearings cost $16 each. A proposal has been made to replace all three bearings whenever a
bearing fails. Management needs an evaluation of this proposal.

Table 1: Random Digit Assignment for Bearing life

Bearing life (Hours) Probability Cumulative Probability | Random Digit
Assignment

1000 0.10 0.10 01-10

1100 0.13 0.23 11-23

1200 0.25 0.48 24-48

1300 0.13 0.61 49-61

1400 0.09 0.70 62-70

1500 0.12 0.82 71-82

1600 0.02 0.84 83-84

1700 0.06 0.90 85-90

1800 0.05 0.95 91-95

1900 0.05 1.00 96-00

Table 2: Random Digit Assignments for Delay Time

Delay Time (Minutes) | Probability Cumulative Probability | Random Digit
Assignment

5 0.6 0.6 1-6

10 0.3 0.9 7-9

15 0.1 1.0 0

Simulate the problem for 20000 hours of operation. It will be assumed in this problem that the times are
never exactly the same and thus no more than 1 bearing is changed at any breakdown. 16 bearings
changes were made for bearings 1 and 2 but only 14 bearings were required for bearing 3.

Assignment: Rework the simulation of the proposed method using new random digits and 30000 hours.

Briefing-5: Simulation of Newspaper seller problem

Example: A paper seller buys the papers for 33 cents each and sells them for 50 cents each. Newspapers
not sold at the end of the day are sold as scrap for 5 cents each. Newspaper can be purchased in the bundles
of 10. Thus the paper seller can buy 50, 60, and so on. There are three types of news days, “good”, “fair”
and “poor” of 0.35, 0.45 and 0.20. The distribution of papers demanded on each of these days is given
below:

Table 1: Distribution of paper demand and the respective probability distribution

Demand Demand probability distribution
Good Fair poor

40 0.13 0.23 11-23
50 0.25 0.48 24-48
60 0.13 0.61 49-61
70 0.09 0.70 62-70
80 0.12 0.82 71-82
90 0.02 0.84 83-84
100 0.06 0.90 85-90

The profits are given by the following relationships

Profit = revenue from sales- cost of newspapers- loss profit from excess demand+ salvage from sales of
scarp papers

Determine the optimum number of papers the seller should purchase. This will be accomplished by
simulating demands for 20 day and recording profits from sales each day. (Simulate for 40 newspaper)

Table 2: Random Digit Assignments for Type of Newsday

Types of News days Probability Cumulative Probability | Random Digit
Assignment

Good 0.35 0.35 01-35

Fair 0.45 0.80 36-80

Poor 0.20 1.00 81-00

Table 3: Random digit assignment of Newspaper demanded

Demand Cumulative distribution Random Digit Assignment

40 0.03 0.1 0.44 01-03 01-10 01-44
50 0.08 0.28 0.66 04-08 11-28 45-66
60 0.23 0.68 0.82 09-23 29-68 67-82
70 0.43 0.88 0.94 24-43 69-88 83-94
80 0.78 0.96 1 44-78 89-96 95-00
90 0.93 1 1 79-93 97-00

100 1 1 1 94-00

Assignment: Simulate the above example for 50 & 60 newspaper.

Lab Manual of Computer Simulation

Briefing 1: Variables, script and operations

MATLAB can be thought of as a super-powerful graphing calculator: Remember the TI-83 from calculus?
With many more buttons (built-in functions). In addition it is a programming language MATLAB is an
interpreted language, like Java Commands executed line by line

Help/Docs: help: The most important function for learning MATLAB on your own and to get info
on how to use a function: »help sin>>Help lists related functions at the bottom and links to the
doc: To get a nicer version of help with examples and easy-to- read descriptions: doc sin

To search for a function by specifying keywords: »doc + Search tab
Scripts: Overview

e Scripts are collection of commands executed in sequence written in the MATLAB editor saved
as MATLAB files (.m extension)

e To create an MATLAB file from command-line

o »edit helloWorld.m

e COMMENT: Anything following a % is seen as a comment. The first contiguous comment
becomes the script's help file. Comment thoroughly to avoid wasting time later note that scripts
are somewhat static, since there is no input and no explicit output. All variables created and
modified in a script exist in the workspace even after it has stopped running.

e Exercise: Scripts

e Make a helloWorld script

* When run, the script should display the following text:

e Hello World!

e |am going to learn MATLAB!

e Hint: use disp to display strings. Strings are written between single quotes, like 'This is a string'.

Scripts: the Editor

* Means that it's not saved

Line numbers _
Real-time

error check

MATLAB file

Debugging tools

B Editor - C:\Documents and Settings\Danilo\My Documents\MATLAB ainToss.m* EH‘EWZ]

Fle Edt Text Go Cel Tools Debug Desktop Window Help “ A X
NDod $aB20 | a2-Aenf R-E8280 il |
EE = (1.0 + | =111 IK oo oo '0, f
¢ conToss.n+———==Halp file .
2 ¥ & script that flips a falr coin and displays the putput
3
q - if rand<0.5 % if & random nunber is lezs than .5 say heads
i disp({'HEADS']) ;
6 — else & 1f greater than 0.5 z3ay talls
7 4 disp (' TAILS'); Comments
= end
| script ln 8 Col 4 |
Possible brea kpUIﬂtS Courtesy of The MathWorks, Inc. Used with permission.

Variable Types

e MATLAB is a weakly typed language. No need to initialize variables! MATLAB supports various
types, the most often used are

e »3.84=64-bit double (default)

e »‘a’=16-bit char

e Most variables you'll deal with will be vectors or matrices of doubles or chars

e Other types are also supported: complex, symbolic, 16-bit and 8 bit integers, etc. You will be
exposed to all these types through the homework.

e Naming variables

e To create avariable, simply assign a value to a name: »varl=3.1 »myString=‘hello world’

Variable names: first character must be a LETTER, after that, any combination of letters,
numbers and CASE SENSITIVE! (varl is different from Var1)

Built-in variables. Don’t use these names!

i and j can be used to indicate complex numbers

pi has the value 3.1415926...

ans stores the last unassigned value (like on a calculator)

Inf and -Inf are positive and negative infinity

NaN represents ‘Not a Number’.

Row Vectors

* Row vector: comma or space separated values between
brackets

» TOW

[1 2 5.4 -6.6]

» row = [1, 2, 5.4, -6.6];

o Command window: s row=11 2 5.4 -6.6]

row =
1.0000 2.0000 5.4000 -g.6000

» Workspace:

2y

S ——

-

iName 3lze Eytes Class
I@ LW ‘1:«:4 ‘ 32‘double array

Column Vectors

Column vector: semicolon separated values between
brackets

» columm = [4;2;7;4]

Command window: =» column=14;2;7;41

column =

4
z
7
4

Workspace: |E==
== = Wl = W P
N ame- ESime Byvtes Class
B column |4xl | 32|doub1e aryay
Matrices

Make matrices like vectors
1 2

Element by elemerjt///» a=
» a= [1 2;3 4]; 3 4

By concatenating vectors or matrices (dimension matters)

» a = [1 2];_——-*
» b = [3 4] ;> D

» ¢ = [5;6] ;\

» d = [a;b]; '.
:

» £ = [[e el;[a b a]] ;=
» str = ['Hello, I am ' 'John'];

> Strings are character vectors

Basic Scalar Operations:

e Arithmetic operations (+,-,*,/) »7/45 »(1+i)*(2+i) »1 /0»0/ 0

e Exponentiation (*) »4/2 »(3+4%j)A2

e Complicated expressions, use parentheses »((2+3)*3)"0.1

e Multiplication is NOT implicit given parentheses »3(1+0.7) gives an error
e To clear command window »clc

Built-in Functions:

e MATLAB has an enormous library of built-in functions
e Call using parentheses — passing parameter to function »sqrt(2) »log(2), log10(0.23)
»cos(1.2), atan(-.8) »exp(2+4*i) »round(1.4), floor(3.3), ceil(4.23) »angle(i); abs(1+i);

Transpose:

e The transpose operators turns a column vector into a row vector and vice versa
e »a=[1234+i]
e »transpose(a)

e »3'

e »a.'

* Addition and subtraction are element-wise; sizes must
match (unless one is a scalar):

[12 3 32 —1]] 12 3 9 |
+[2 11 -30 32 L =E| 2
—10| |13 23
=[14 14 2 21]
0 33 —33 |
* The following would give an error
» ¢ = row + column
e Use the transpose to make sizes compatible
» ¢ = row’ + column

» ¢ = row + column’
e Can sum up or multiply elements of vector
» s=sum(row) ;

» p=prod(row) ;

Operators: element-wise

To do element-wise operations, use the dot: . (.*, ./, .A). BOTH dimensions must match (unless

one is scalar)!

e »a=[12 3];b=[4;2;1];
e »a.*b,a./b, a.*b £ all errors
e »a.*b', a./b’, a.rb’) £ all valid

Operators: standard

o Multiplication can be done in a standard way or element-wise

+ Standard multiplication (*) is either a dot-product or an outer-
product
» Remember from linear algebra: inner dimensions must MATCH!!

» Standard exponentiation (*) can only be done on square matrices
or scalars

o Left and right division (/ \) is same as multiplying by inverse
» Our recommendation: just multiply by inverse (more on this

|ater)
4 | 2 12171 2 1110231736 9
9= *
I 2 3z =i L JZ'L 4“3 4} 22 241 2 3|=/6 12 18
l 3331230018277

Must be square to do powers
I%3%3x1=1x]1 Ix3*3%3=3%3

Vector Indexing

MATLAB indexing starts with 1, not O

»We will not respond to any emails where this is the
problem.

a(n) returns the nth element

a=[13 5 9 10

a(l) a(2) a(3) a(4)

The index argument can be a vector. In this case, each
element is looked up individually, and returned as a vector
of the same size as the index vector.

» x=[12 13 5 8]1;
» a=x(2:3) ; » a=[13 5] ;
» b=x(1:end—1}; » b=[12 13 5]?

Matrix Indexing

Matrices can be indexed in two ways

> using subscripts (row and column)

= using linear indices (as if matrix is a vector)
Matrix indexing: subscripts or linear indices

il 5,

b1 1)y—| 14 33 ~—b(1,2) b(1) — |14 33 |— b(3)
b(2,1)—| 9 8 |=— b(2,2) b(2) ——| 9 8 |=— b(4)

Picking submatrices
» A = rand(5)

» A(1:3,1:2)
» A{[1 5 31, [1 41)

Advanced Indexing 1

To select rows or columns of a matrix, use the :

12 5
=
-2 13

» d=c(1,:); d=[12 5] ;
» e=c(:,2); e=[5;13];

» e{2,:)=[3 6]; %replaces second row of c

Advanced Indexing 2

MATLAB contains functions to help you find desired values
within a vector or matrix

» vec = [6 3 1 9 7]

To get the minimum value and its index:
» [minVal,minInd] = min(vec);

» max Works the same way

To find any the indices of specific values or ranges
» ind = find(vec == 9);
» ind = find(vec > 2 & vec < 6);

~» find expressions can be very complex, more on this later

To convert between subscripts and indices, use ind2sub,
and sub2ind. Look up help to see how to use them.

Plotting:

What does plot do?

= plot generates dots at each (x,y) pair and then connects the dots
with a line
» To make plot of a function look smoother, evaluate at more points

» x=linspace (0,4*pi,1000) ;
» plot(x,sin(x));

» x and y vectors must be same size or else you'll get an error
» plot([1 21, [1 2 31)

> error!!

1 1 ,
10 x values: /\ / I"-.] 1000 x values: = r..-’ \\.H / \".II]
as jf \ .'II 'lII 4 sl % [\ |
az 'I,I I,' '-II 4 ax Jl' I‘II IIll 'lI 4
o '|II \ / ol 1 IIlI [
- \] \ \ / R
: '.III \ I/ s |II'|I ; |III I|, 4
" - o) Yot]
S, | VA A

Plot Options

e (Can change the line color, marker style, and line style by
adding a string argument
» plot(x,y,.’'k.-");

N T

color marker line-style

e Can plot without connecting the dots by omitting line style
argument
¥ plotix, v, .")

e Look at help plot for a full list of colors, markers, and
linestyles

Playing with the Plot

to select lines
and delete or

change
propertie{

+ Figure 2
Fi!e Edit View Insert Tools DesktquWind:gw HeIEn

@?a{m@g@:

-]
0
i

i

W

to see all plot
tools at once

oo
Lopy
Delete

Color

P T Line Width

o Line e

et Iarker

T Ve

1 15 2 25 g 35 2 Properties, .

J v ﬁidéthelplot..
\' to zoom in/out around o

B

4

2

;

2

Show Mrooe | N
1

4 v 50lid

o dash

o ot
dasnraat

Courtesy of The MathWorks, Inc. Used with permission.

Briefing 2: Visualization and Programming

User-defined Functions

e Functions look exactly like scripts, but for ONE difference
~ Functions must have a function declaration

= C:WMATLABG&pS\Wwork\stats.m

Flle Edit View Text Debug Breakpoints Web Window Help

Dmeld| % e o | &M £ | a0 B S | sede P =2
1 % stats: computes The average, Standard deviation, and range
2 L of s given wector of data
3 % Help file
4 % [ava.,sd, rangs]=statcs (=
5 %= awdg — The averadge (arithmeTtic mesn) of =
= g =5l — vho statdard glavwiabicon of 2
Fi % range a 2% weotbHr conptaindng Ere min ahd max valuss 3 &
B % 2 — a wecher of waluss
=) function [avg,sd,range]l=stats{x;*+— Function declaration
10— avg=m=sani=<) s = .
11|-| sd—staix)r Outputs Inputs
127 | range=[minix);: max(x)1:

cainT oss.m state.m
[stais [tn1d Calza
- -
User-defined Functions
e Some comments about the function declaration

-1

D
wn
D
n
D
Q.

Inputs must D

function [x, y, z] = funName(inl, in2)

Must have the reserved Function name should
word: function match MATLAB file

If more than one ouﬁ?SﬂE?
must be in brackets

No need for return: MATLAB 'returns' the variables whose
names match those in the function declaration

Variable scope: Any variables created within the function
but not returned disappear after the function stops running

Relational Operators

e MATLAB uses mostl/y standard relational operators
= equal ==

not equal

greater than

less than

greater or equal

» less or equal

s Logical operators

5=
':-.F"

D AV AV ?
Il

lementwise short-circuit (scalars)
&

k!
>
-]
a
TP

= Xor xor
= All true all
= Any true any

s Boolean values: zero is false, nonzero is true
e See help . for a detailed list of operators

if/else/elseif

Basic flow-control, common to all languages
MATLAB syntax is somewhat unique

IF ELSE ELSEIF
if cond if cond if cond1
commands commandsl commandsl
end else elseif cond2
\ commands2 commands2
Conditional statement: end else
evaluates to true or false commands3
end

* No need for parentheses: command blocks are between
reserved words

for

for loops: use for a known number of iterations

MATLAB syntax:
Loop variable

for n=1-100

commands \
end

Command block

The loop variable
»~ Is defined as a vector
» Is a scalar within the command block

~ Does not have to have consecutive values (but it's usually
cleaner if they're consecutive)

The command block
~ Anything between the for line and the end

while

 The while is like a more general for loop:
» Don't need to know number of iterations

WHILE

while cond
commands
end

s The command block will execute while the conditional
expression is true

e Beware of infinite loops!

Briefing 3: Solving Equation and curve fitting

Systems of Linear Equations

" MATLAB makes linear
algebra fun!

e Given a system of linear equations
» X+2y-3z2=5
» -3X-y+z=-8
> X-y+z=0
e Construct matrices so the system is described by Ax=b
» Hemfl 2 =333 -1 133 -1 23y
» b=[5:-8;:;0]:;

* And solve with a single line of code!
» x=A\b;
> X is a 3x1 vector containing the values of x, v, and z

The \ will work with square or rectangular systems.

Gives least squares solution for rectangular systems. Solution
depends on whether the system is over or underdetermined.

Exercise: Linear Algebra

e Solve the following systems of equations:

» System 1: » A=l 43-3 11;
x+4y =34 » b=[34;2];
—3x+}h:2 » rank (A)

» X=inwv (A) *b;

» System 2: » A=[2 -2;-1 1;3 4];
2:’(‘—2'}:4 » b=[4;3;2];
=3 » rank (A) '

3 4 5 'rrectangular matrix
X+4y==2 » x1=A\b;

~ gives |least squares solution
» error=abs(A*xl-b)

Polynomials

Many functions can be well described by a high-order
polynomial

MATLAB represents a polynomials by a vector of coefficients

~ if vector P describes a polynomial
ax>+bx?24+cx+d

7

P(1) P2 PE) P@)

P=[1 O -2] represents the polynomial x2-2

P=[2 O 0O O] represents the polynomial 2x3

Polynomial Operations

P is a vector of length N+1 describing an N-th order polynomial

To get the roots of a polynomial
» r=roots(P)
» ris a vector of length N

Can also get the polynomial from the roots
» P=poly(r)
» ris a vector length N

To evaluate a polynomial at a point
» y0=polyval (P, x0)
» X0 is a single value; yO0 is a single value

To evaluate a polynomial at many points
» y=polyval (P, x)
» X is a vector; y is a vector of the same size

Nonlinear Root Finding

Many real-world problems require us to solve f(x)=0
Can use fzero to calculate roots for any arbitrary function

fzero needs a function passed to it.
We will see this more and more as we delve into solving

equations.

Make a separate function file

» x=fzero('myfun',1
» x=fzero (@myfun,1l)

» 1 specifies a
point close to where
you think the root is

% C:\MATLAB6p5\work\myfun.m
Rle Edit View Text Debug Breakpoints Web Window Help

bERon SlMF | 88| C9 T RE e
funcetion y=myfun{z!

| y=cos(eXp(x))+E.T2-1;

pirToggm o dalem o Bmpmo gelSeoresim o BUGQYCOHEM i

myfun Ln?

- [O[X|

[

ColZl

Courtesy of The MathWorks, Inc. Used with permission.

Minimizing a Function

¢ fminbnd: minimizing a function over a bounded interval
» X=fminbnd('myfun',-1,2);
» myfun takes a scalar input and returns a scalar output
» myfun(x) will be the minimum of myfun for -1<x < 2

*« fminsearch: unconstrained interval

» Xx=fminsearch('myfun', .5)
» finds the local minimum of myfun starting at x=0.5

Optimization Toolbox

e If you are familiar with optimization methods, use the
optimization toolbox

e Useful for larger, more structured optimization problems

e Sample functions (see help for more info)
» linprog
~ linear programming using interior point methods
» gquadprog
~ quadratic programming solver
» fmincon
~ constrained nonlinear optimization

Numerical Differentiation

MATLAB can 'differentiate’ numerically:}
» x=0:0.01:2%pi; 2

o4}

» y=sin (x) ; =

» dydx=diff(y)./diff (x):; 0
> diff computes the first di@-

a4t

46

Can also operate on matrices a5l

» mat=[1 3 5;4 8 6]; A
» dm=diff (mat,1,2)
» first difference of mat along the 2" dimension, dm=[2 2;4 -2]

» see help for more details
» The opposite of diff is the cumulative sum cumsum

1] 100 200 300 400 500 600

2D gradient
» [dx,dy] =gradient (mat) ;

Numerical Integration

MATLAB contains common integration methods

Adaptive Simpson's quadrature (input is a function)
» g=quad{'myFun',0,10) ;
~ q is the integral of the function myFun from 0 to 10
» g2=qgquad{(@(x) =in(x)*x,0,pi)
~ q2 is the integral of sin (x) *x from 0 to pi
Trapezoidal rule (input is a vector)
» x=0:0.0L:pi;
» z=trapz(x,=s2in(x)) ;
~ z is the integral of sin(x) from 0O to pi
» zm2=trapz (x,sgqgrt{exp(x)) ./x)
=~ z2 is the integral of xf!e_x/x from O to pi

ODE Solvers: MATLAB

 MATLAB contains implementations of common ODE solvers

+ Using the correct ODE solver can save you lots of time and
give more accurate results

» ode23

» Low-order solver. Use when integrating over small intervals
or when accuracy is less important than speed

» oded5

» High order (Runge-Kutta) solver. High accuracy and
reasonable speed. Most commonly used.
» odelbs

» Stiff ODE solver (Gear's algorithm), use when the diff eq's
have time constants that vary by orders of magnitude

ODE Solvers: Standard Syntax

e To use standard options and variable time step
» [t,y]=0ded45('myODE', [0,10],[1;0])

ODE integrator: /

23, 45, 15s I .
ODE function Time range

Initial conditions

e Inputs:

» ODE function name (or anonymous function). This function
takes inputs (t,y), and returns dy/dt

~ Time interval: 2-element vector specifying initial and final
time

~ Initial conditions: column vector with an initial condition for
each ODE. This is the first input to the ODE function
e Qutputs:

~ t contains the time points

~ vy contains the corresponding values of the integrated
variables.

ODE Function

The ODE function must return the value of the derivative at
a given time and function value

Example: chemical reaction

10
»~ Two equations m
dA
=—104+50B ~_
dt
daB
—=104-50R8 i e]
dr % C:\MATLAB6p5\work\chem.m (=] 79
File Edit Wiew Text Debug Breakpoints Web Window Help
" " W = LR o S F | Bl | 2 E R | sl E3
~ ODE file: [T Eop—— — = e
—‘__-“————-__%__ chem: chemic=sl rescTion ode tunction
-V has [A;B] [~ 2> function dvdt-—chem{t,)
3| dydt=zeros{(Z,1} ;
— dydt has A|~| dydtil)——10%w (1 +50%% (27
[dA/dt;dB/dt] Bl-| gydcizi=10%y{l)-S0*v{z};
< stats m fEmp m getdcoresm Bugone’:nce m i m charr.m

[chem LA Col 75

Courtesy of The Mathworks, Inc. Used with permission.

ODE Function: viewing results

* To solve and plot the ODEs on the previous slide:
» [t,y]=0oded45('chem’', [0 0.5], [0 1]1);
» assumes that only chemical B exists initially
» plaet (., vz, 1), "k, “LineWidth',1.5):;
» hold on;
» plot(t,yv(:,2),'xr', "LineWidth',1.5);
» legend('A','B');
» xlabel ('Time (=) ') ;
» vwlabel ('Amount of chemical (g) ') ;

» title('Chem reaction');

ODE Function: viewing results

e The code on the previous slide produces this figure

Chem reaction

Armaount of chemecal (g)
o
n

L) 1 L L I | ! I
Li] 005 01 015 02 025 03 035 04 045 05
Time (5]

Briefing 4: Advance Method

Statistics

» Whenever analyzing data, you have to compute statistics
» scores = 100*rand(1,100);

* Built-in functions
» mean, median, mode

* To group data into a histogram
» hist (scores,5:10:95);
» makes a histogram with bins centered at 5, 15, 25..95
» N=histc(scores,0:10:100);

» returns the number of occurrences between the specified
bin edges 0 to <10, 10 to <20..90 to <100. you can plot
these manually:

» bar(0:10:100,N, 'r")

Random Numbers

Many probabilistic processes rely on random numbers

MATLAB contains the common distributions built in
» rand
~ draws from the uniform distribution from 0 to 1
» randn
~ draws from the standard normal distribution (Gaussian)
» random
~ can give random numbers from many more distributions
» see doc random for help
~ the docs also list other specific functions
You can also seed the random number generators
» rand('state',0); rand(l); rand(l) ;
rand("state',0); rand(l) ;

Changing Mean and Variance

e We can alter the given distributions
» y=rand(1l,100)*10+5;
» gives 100 uniformly distributed numbers between 5 and 15
» y=floor(rand(1,100) *10+6) ;

~ gives 100 uniformly distributed integers between 10 and
15. floor or ceil is better to use here than round

» y=randn(l1l,1000)
» y2=y*5+8
~ increases std to 5 and makes the mean 8

[

[

4 58 8B R EDR

Briefing 5: Symbolic

Symbolic Variables

o Symbolic variables are a type, like double or char

» To make symbolic variables, use sym

» a=sym('1/3');

» b=gym('4/5");

» mat=gym([1l 2;3 4]);
» fractions remain as fractions

» c=gym('c', 'posgitive');
» can add tags to narrow down scope
» see help sym for a list of tags

o Or use syms

» syms X y real

» shorthand for x=sym('x','real’); y=sym('y','real’):

Cleaning up Symbolic Statements

[

» pretty (ans)

149 - 2/23 ¢ + o

» makes it look nicer

» collect (3*x+4*y-1/3*x"2-x+3/2*%y)

» collects terms Jans =
Sru+ll/EF =1 B u R

» simplify(cos(x) "2+sin(x) "2)

» simplifies expressions ————+fans =
1

» subs(‘c™2’,c,5)
~ Replaces variables with numbers

or expressions. To do multiple substitutions
pass a cell of variable names followed by a cell of values

y suba{‘e" 2 ,c,%2/7)

ans=
25

¥

* ans=
1/49*x"2

Symbolic Expressions

e Multiply, add, divide expressions
» d=a*b o |d =

» does 1/3*4/5=4/15; 4/15

» expand((a-c)”*2);

» multiplies out — ,[ans =
1/9-2/3%c+c"2

» factor (ans) ans =

» factors the expression 1/9* (3*c-1)~2

ans =
[-2, 1]

» Computes inverse symbolically [3/z, -1/2]

» matInv=inv (mat)

v

